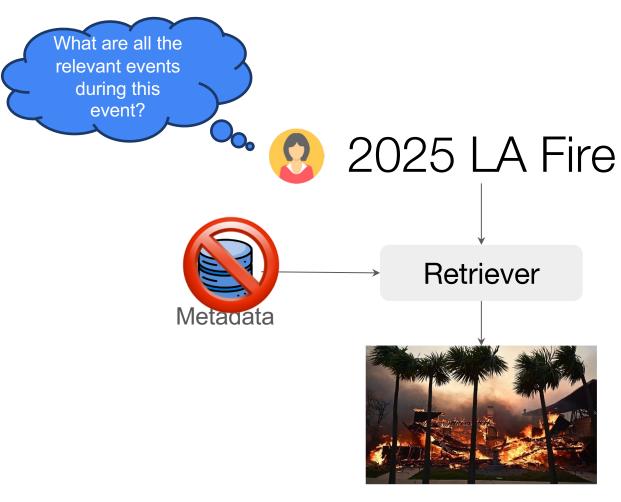
Q₂E: **Q**uery-to-**E**vent Decomposition for Zero-Shot Multilingual Text-to-Video Retrieval

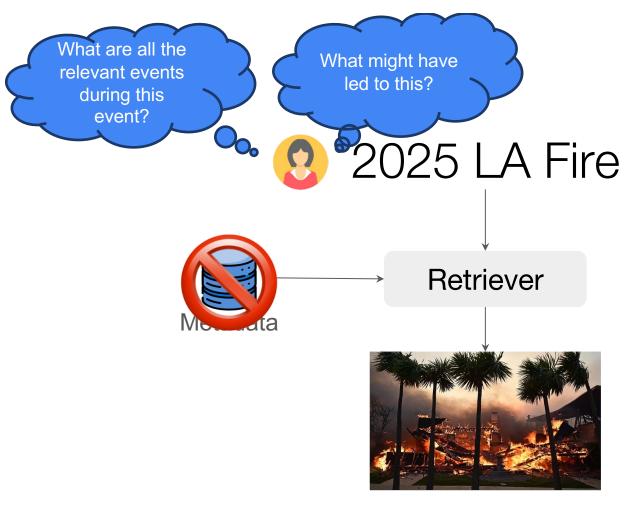
Shubhashis Roy Dipta

Frank Ferraro



Retrieving videos is hard **without** metadata. How can we improve it...

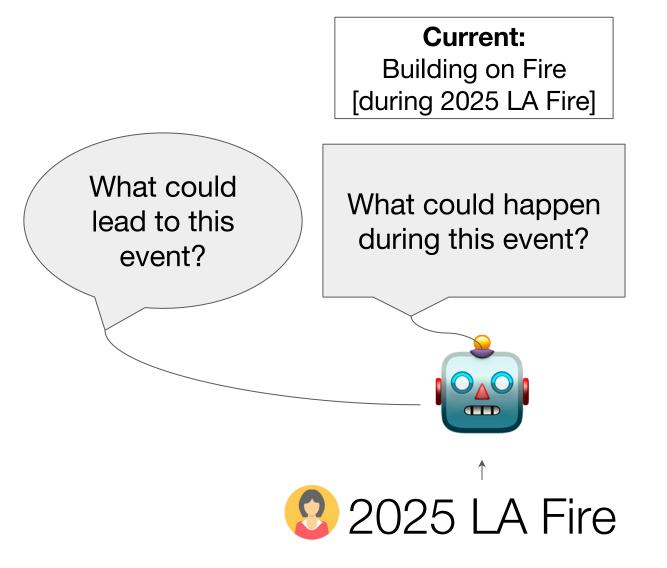
• via enriching the query?


• via information within the video?



What could happen during this event?

Current:


Building on Fire [during 2025 LA Fire]

What could happen during this event?

Prequel:

Dry Lightning [before 2025 LA Fire]

Current:

Building on Fire [during 2025 LA Fire]

What could lead to this event?

What could happen during this event?

Prequel:

Dry Lightning [before 2025 LA Fire]

Current:

Building on Fire [during 2025 LA Fire]

What could lead to this event?

What could happen during this event?

What could be an outcome of this event?

Prequel:

Dry Lightning [before 2025 LA Fire]

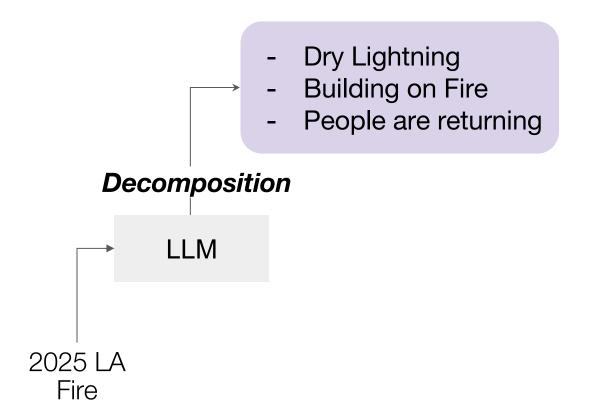
Current:

Building on Fire [during 2025 LA Fire]

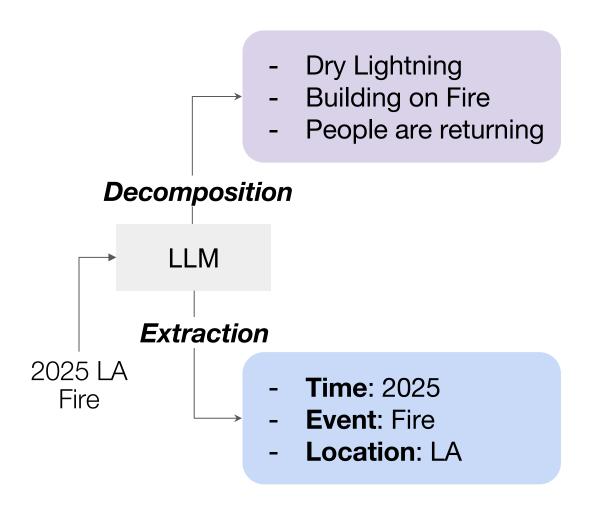
Sequel:

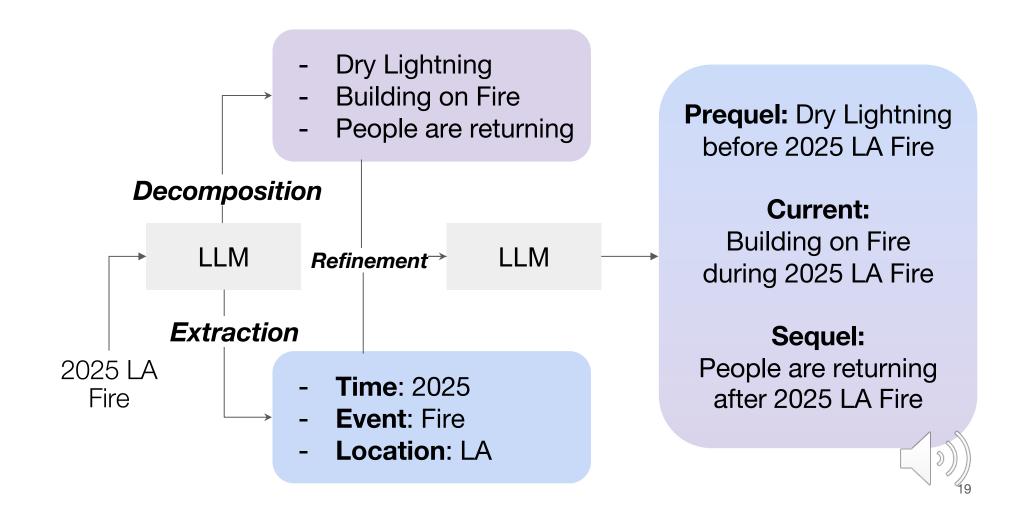
People are returning [after 2025 LA Fire]

What could lead to this event?


What could happen during this event?

What could be an outcome of this event?





Retrieving videos is hard without metadata. How can we improve it...

via enriching the query?

• via information within the video?

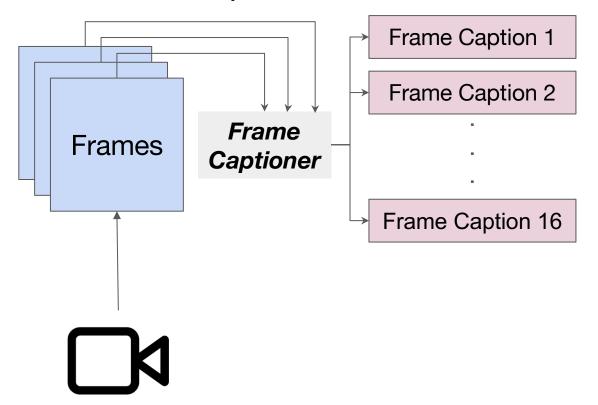
Query: 2025 LA Fire

Video Desc.:

Trees and a building are on fire. ... → A wildfire burning.

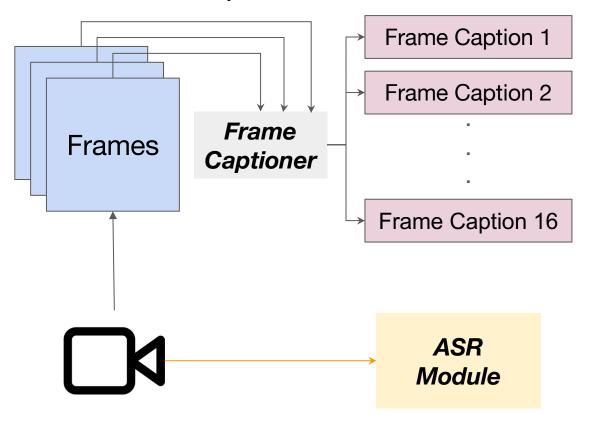
ASR:

Today, Aug 16, 2020 a massive wildfire has started

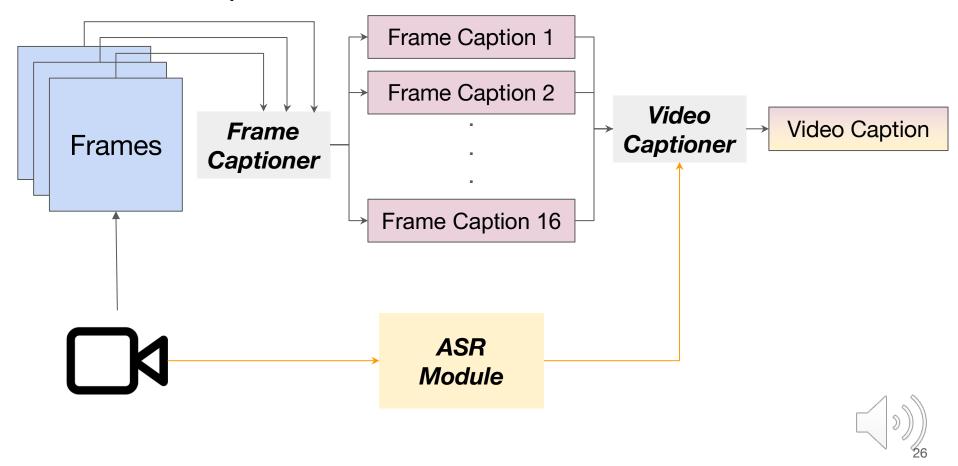

Enrichment from Videos

Can't VLMs just do this?

- Descriptions may not be at the right level of granularity
- Current VLM fails to understand the full context
- Current ASR fails to both translate and transcribe in one go
- Multilingual videos still pose challenges

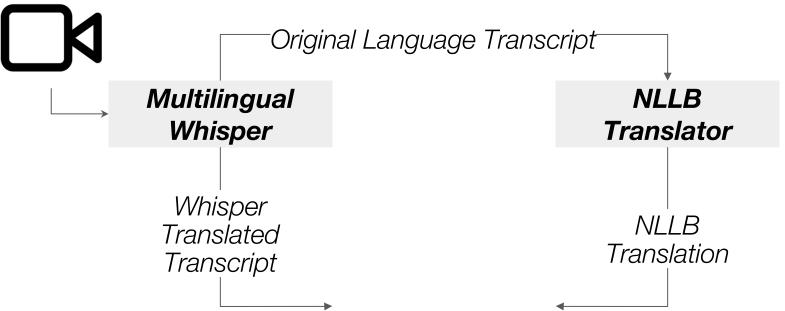


Video Description Extraction

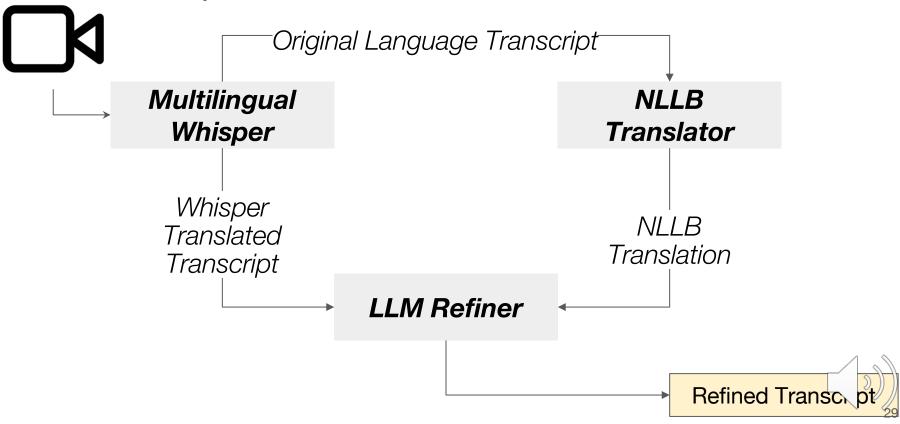


Video Description Extraction

Video Description Extraction



Audio Description Extraction

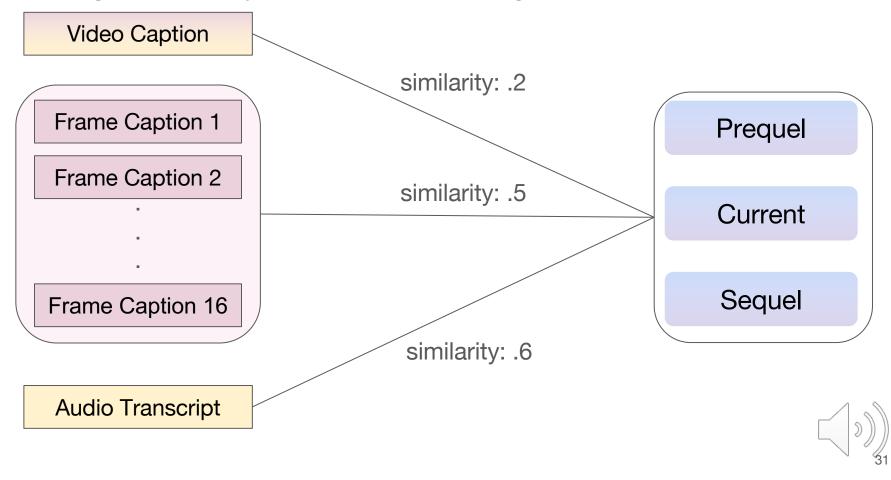


Audio Description Extraction

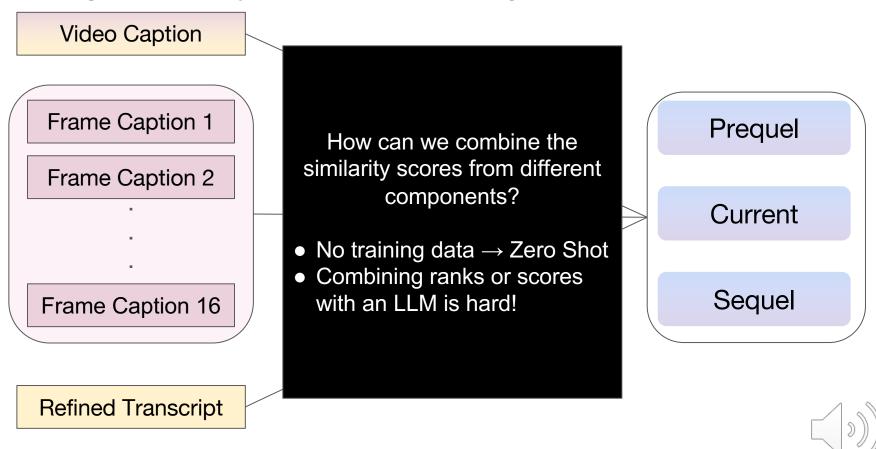
Audio Description Extraction

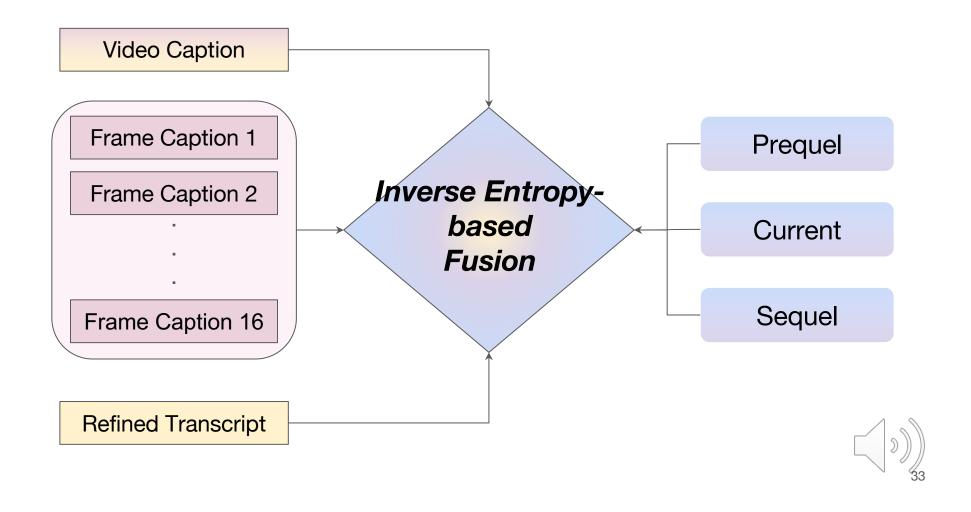
Retrieving videos is hard without metadata. How can we improve it...

via enriching the query?



via information within the video?





For a given query and potential target video...

For a given query and potential target video...

Results

Number of Queries	259
Average Words in Query	27
Number of Videos	2394
Average Length of Video	83

- 5 Languages Arabic, Chinese, English, Korean, Russian
- Event Specific dataset, i.e., "earthquake, flood"

Model	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
MultiCLIP	70.82	65.25	0.92	75.34
Q ₂ E (MultiCLIP)				
InternVideo2				
Q ₂ E (InternVideo2)				

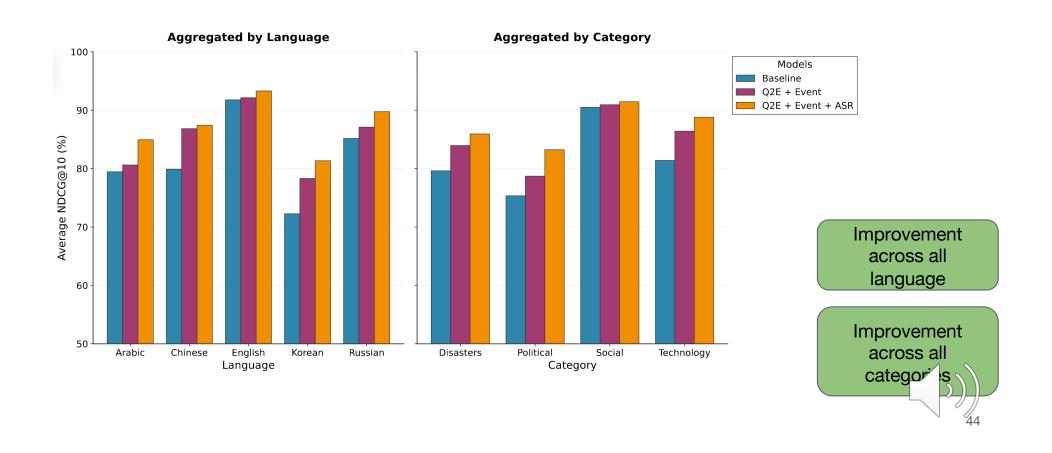
Model	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
MultiCLIP	70.82	65.25	0.92	75.34
Q ₂ E (MultiCLIP)	79.60	73.09	0.95	83.24
InternVideo2				
Q ₂ E (InternVideo2)				

Model	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
MultiCLIP	70.82	65.25	0.92	75.34
Q ₂ E (MultiCLIP)	79.60	73.09	0.95	83.24
InternVideo2	49.12	45.44	0.68	50.45
Q ₂ E (InternVideo2)				

Model	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
MultiCLIP	70.82	65.25	0.92	75.34
Q ₂ E (MultiCLIP)	79.60	73.09	0.95	83.24
InternVideo2	49.12	45.44	0.68	50.45
Q ₂ E (InternVideo2)	70.79	65.14	0.95	76.10

Ablation Studies

- Performance Across Different Fusion Algorithms
- Performance Across Languages
- Performance Across Categories
- Effect of Different Components
- Effect of LLM size (in paper)
- Effect of VLM size (in paper)
- Effect of Key Frame Selection (in paper)
- Effect of Rank Fusion Approaches (in paper)
- Qualitative Examples (in paper)


Performance Across Different Fusion Algorithms

Fusion Algorithm	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
Negative Exponential Entropy	67.23	61.97	0.93	73.20
Reciprocal Rank Fusion	70.91	65.29	0.93	76.29
Maximum Aggregation	76.10	70.04	0.93	80.04
Mean Aggregation	78.64	72.47	0.95	82.44
Inverse Entropy Fusion	79.60	73.09	0.95	83.24

Inverse entropy fusion provides good reweighting

Performance Across Language & Categories

Performance Of Components

Model Size	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
Q_2E	79.60	73.09	0.95	83.24
w/o Query Sim.	78.12	71.74	0.93	81.54
w/o Video Desc.	67.74	62.43	0.93	73.96
w/o Events	77.77	71.47	0.94	81.75
Baseline	70.82	65.25	0.92	75.34

Q₂E extracts complementary information

Summary

- 1. We introduce $\mathbf{Q_2E}$, a novel framework based on decomposition
- 2. We show that LLM's parametric knowledge can be used to enrich, otherwise, vague human queries
- 3. Combining both VLM and ASR gives better representation of the video

RoyDipta.com

Auxiliary Slides

MSR-VTT-1kA

Number of Queries	995
Average Words in Query	9
Number of Videos	1000
Average Length of Video	15

- Standard 1000 test split due to High Computation
- Generic life videos, i.e., "a man is playing with a dog"

MSR-VTT-1kA

Model	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
MultiCLIP	76.88	7.71	0.54	59.72
Q ₂ E (MultiCLIP)	81.71	8.19	0.58	63.59
InternVideo2	80.10	8.03	0.62	66.07
Q ₂ E (InternVideo2)	83.72	8.39	0.65	69.53

MSVD

Number of Queries	22285
Average Words in Query	8
Number of Videos	670
Average Length of Video	10

- Standard 1000 test split due to High Computation
- Generic life videos, i.e., "A man is eating spaghetti."

MSVD

Model	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
MultiCLIP	87.18	9.23	0.67	71.69
MultiCLIP + Q ₂ E	89.18	9.45	0.70	74.10
InternVideo2	89.47	9.49	0.74	77.51
InternVideo2 + Q ₂ E	89.99	9.54	0.74	77.84

Performance Across Different Aggregation Methods

Events	Captions	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
Mean	Max	77.91	71.58	0.95	81.97
Max	Mean	0.46	0.39	0.00	0.44
Max	Mean Top 3	78.90	72.47	0.94	82.54
Max	Mean Top 5	78.91	72.47	0.94	82.50
Mean Top 3	Max	79.11	72.70	0.95	82.91
Mean Top 3	Mean Top 3	78.96	72.51	0.94	82.62
Max	Max	79.60	73.09	0.95	83.24

Q2E performs the best

Mean over captions did worst (VLM makes noisy captions)

Performance Across **LLM Size**

Model Size	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
1B	78.71	72.28	0.95	82.50
3B	79.17	72.74	0.95	83.03
8B	79.04	72.59	0.95	82.91
70B	79.60	73.09	0.95	83.24

Q₂E provides strong multilingual improvements

Q₂E extracts complementary information

Q₂E is stable across LLM sizes

Performance Across VLM Size

Model Size	R@10 ↑	P@10 ↑	MRR ↑	NDCG ↑
1B	71.73	66.02	0.93	75.86
2B	73.86	68.03	0.93	77.90
4B	75.85	69.92	0.93	79.81
8B	75.73	69.81	0.93	79.72
26B	76.16	70.19	0.95	80.47
38B	75.75	69.73	0.95	80.04

Q₂E provides strong multilingual improvements

Q₂E extracts complementary information

Q₂E is stable across LLM sizes

Q₂E is stable across big enough VLM sizes

Dataset	MultiVENT			
Query	November 30 earthquake in South Central Alaska 2018			
Prequel	Buildings shaking and swaying due to the earthquake in Anchorage, Alaska, on November 30, 2018			
	• People running out of buildings and evacuating the area in Anchorage, Alaska during the earthquake on November 30, 2018			
	• Cars stopped on the road as the earthquake strikes in Anchorage, Alaska on November 30, 2018			
	• Debris and objects falling from shelves and ceilings during the 30 November 2018 Anchorage, Alaska earthquake			
Current	• Emergency responders rushing to the scene to assist with evacuation and relief efforts after the 30 November 2018 earthquake in Anchorage, Alaska, South Central Alaska			
	• Buildings shaking and crumbling during the 30 November 2018 earthquake in Anchorage, Alaska, South Central Alaska			
	• People running out of buildings and evacuating the area during the 30 November 2018 Anchorage, Alaska earthquake			
	• Emergency responders rushing to the scene after the 2018 Anchorage, Alaska earthquake on November 30, 2018			
	• Debris falling from buildings and damaging streets during the November 30, 2018 earthquake in Anchorage, South Central Alaska			
	• Cars stopped or abandoned on the road in Anchorage, Alaska, South Central Alaska due to the earthquake on November 30, 2018			
Sequel	Buildings crumbling or collapsing during the November 30, 2018 earthquake in Anchorage, Alaska			
	• People running for cover or evacuating buildings during the November 30, 2018 earthquake in Anchorage, Alaska			
	• Emergency vehicles rushing to the scene of the 2018 Anchorage, Alaska earthquake on November 30, 2018			
	• Cracks forming in roads and highways in Anchorage, Alaska, South Central Alaska, after the 30 November 2018 earthquake			
	Debris falling from damaged structures during the 30 November 2018 earthquake in Anchorage, Alaska			